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INTRODUCTION

Bak, Tang, and Wiesenfeld (ref 1) introduced the notion of self-organized critical (SOC) systems to
provide a consistent explanation for the fractal spatial structures, power law distributions, and flicker
noise commonly observed in spatially-extended driven dissipative dynamical systems and suggested that
sand piles were examples of such systems. They proposed that the process of adding grains of sand at
random locations within a grid produces a sand pile whose geometric configuration evolves toward a
critical form. The critical state is an attractor for the dynamics of the system. The implications of the
SOC concept for the distributions of avalanches in "sand pile numerical models” have been extensively
explored (refs 1-4). It was demonstrated that avalanche sizes in finite sand pile models had the form of
“cutoff hyperbolic distributions" consistent with the predictions of Bak, Tang, and Wiesenfeld (ref 1).
These models demonstrate how complex fractal surfaces evolve from simple system dynamics. The state
of the sand pile at any time is given by the height of the pile 4(x,y) at points {x,y} on a two-dimensional
lattice. The automata are governed by rules that define the conditions for site stability and the nature of
the local rearrangements that occur when a site becomes unstable.

Kadanoff et al. (ref 2) showed that the distribution of avalanche sizes that occurs when an SOC state
is perturbed can be fit over extensive ranges by power laws. Jensen et al. (ref 3) and Meisel and Cote
(ref 5) demonstrate that cutoff power law distributions of avalanche sizes give rise to flicker noise in the
power spectral density. Thus, time-scale invariance (flicker noise) over increasing time scales and length-
scale invariance (fractal scaling) over increasing spatial scales develop as the model is "driven” through a
sequence of subcritical self-organized states. The range of fractal scaling correlates with the size-effect
parameters in the cutoff power law avalanche size distributions and in the critical state, fractal scaling
may be observed over essentially all scales.

However, a quantitative analysis of the geometric scaling properties of the evolving automata
structures has not previously been reported. The limited point sets generated in typical sand pile
simulations are insufficient for the application of standard fractal analysis techniques. Therefore, 2 new
procedure for extracting fractal parameters has been developed (ref 6). This new technique is inherently
parallel and its fast convergence makes it well suited to the study of limited fractal subsets. The
algorithm has been implemented on a multicomputer environment using a subset of TROLLIUS (Ohio
State University and Cornell Research Foundation) called LAM (ref 7). LAM is a programming
environment and development system for a message passing multicomputer comprised entirely of UNIX
workstations.

THE SAND PILE DYNAMICAL MODELS

The cellular automata employed in this study are based on a two-dimensional regular lattice of cells
using the rules similar to those given for model 2 of Reference 2. The basic variable is z(i,j) where (i,/)
are the spatial indices and z represents the height of the lattice. The system is initialized to a planar
surface, z(i,j) = 0. Particles are added at random locations z(i,j) such that z(i,j) = z(i,j) + 1 as long as
all the sites are stable. After a particle is added and after particle rearrangements, the stability of all
lattice sites is determined.




The stability of the site {i,f} is determined by z(i.j) and the nearest neighbor z values. In the model
treated here, a site becomes unstable when .

k=1
3 ((2(i. ) = 20, j = k) H (20, J) = 23, j = k) + (20, ) = 2 = k, )NH(2G, )= 20 = k. ) > O¢
k=-1

where H is the Heaviside function and o, is the stability parameter.

If site {i,j) becomes unstable, z(i,j) is reduced by

k=1 ‘
Y (H(z(, )= 20, = k) + H(z(i, ) - 2(i =k, ))))
k=-1

and the height of the corresponding nearest neighbor cells is incremented by 1 if and only if their z-value
is less than z(i,j). Note that in Reference 3, the stability of a site is determined by all nearest neighbors
(so that a higher z neighbor site tends to stabilize a given site), and that particles are allowed to slide
"uphill." If all sites are stable, a new particle is added to the system.

The boundaries are treated as cells with z(x,y) = 0. The cellular automata rule is applied recursively
to the cells whose state is affected by the unstable site, and the diffusion process continues until there are
no more unstable sites. No new particles are added to the lattice until the lattice stabilizes. The number
of sites that is changed as the lattice reorganizes after a particle is added is the size of the resulting
avalanche, and the total number of particles that has been added to the system is denoted N.

D BY TRIANGULATION

The dynamical model under investigation yields a single-valued sand pile surface z(i, j). It is,
therefore, possible to define a hierarchy of approximations of the surface in terms of triangles of different
sizes in a simple unambiguous way. The extent of the lattice models studied has been adjusted to
facilitate the triangular approximations. Taking

L =N=2"+ ] forinteger n

enables one to define sets of triangles whose vertices coincide with subsets of points on the lattice and
whose projections in the xy-plane are right triangles of side lengths ¥, which we refer to as "yardsticks,"
given by

Y(m)=2m form = {0,1,...n}



The small Y(m) approximations to fractal surfaces scale approximately according to

d In(A(m))

> -D
dIn(Y (m)) m= 0 2

where the area A(m) is the surface area for the triangulation based on Y(m) by Y(m) cells, andDisa
fractal dimension. A(m) can be expressed in terms of individual triangle areas

A(m)= Y. 4; (m)

Note that the smallest yardstick in the set is ¥(0) = 1, which is as far as one can go in the analysis ofa
surface defined on a discrete lattice of points.

A detailed description of the algorithm has been published (ref 6). The reliability of the algorithm has
been successfully tested with Euclidean and "Brown" surfaces (ref 8). Brown constructions were
selected for the tests because elevations are single-valued, as required by the algorithm, and because D
can be adjusted to have any value between 2 and 3.

LAM IMPLEMENTATION

The triangulation algorithm is capable of reliably determining fractal scaling parameters of relatively
sparse, nonhomogeneous data sets. However, the generation of local D-maps is numerically expensive.
Therefore, a suite of homogeneous parallel procedures, which exploits the inherent parallelism of the
computational problem, has been developed to map the trian gulation algorithm to a multicomputer
platform using a subset of TROLLIUS (product of Ohio State University and the Cornell Research
Foundation) called LAM (ref 7) for interprocess communication. The multicomputer is restricted to a
network of machines that run LAM as a native application under UNIX. LAM generally supports only
general purpose UNIX machines connected via a local area network or the internet. LAM is a node-
oriented computing environment that uses a unique identifier assigned to each node (nodeid) as the
primary synchronization for communication. The nodes are usually fully connected (maximum 1-hop
distance) since the network is generally a shared resource. In our parallel implementation of the
triangulation algorithm, a master process assigns equal-sized regions of the structure to slave processing
nodes for computation of local D-map subsets. The processing nodes return the results to the master
process, where the D-map is assembled and the slave processes are assigned new regions to analyze.
Although this approach does not exploit the communication advantages of a fully connected network, the
load balancing resulted in a performance improvement directly proportional to the number of
workstations. This is likely due to the high computation/communication ratio and the relatively small
(15) number of workstations making up the multicomputer.




RESULTS

Results were obtained for structures with 6, = 20 through 90 in increments of 10 on 513 x 513
lattices for extensive ranges of N. We refer to the configuration obtained for 6, =20 and N = 7x108
particles as the 6, = 20 structure, and that for 6, =40 and N = 7x108 as the o, = 40 structure.

Figure 1 shows interpolated shading representations of central 40 x 40 regions of the 6 = 20 and the
6 = 40 structures.

Figure 2 plots D versus O, for central regions of "close-to-critical" sand pile structures. As O
increases, larger N values are required to reach critical sand pile configurations. However, if N is chosen
too large, boundary effects "diffuse” into the region being analyzed. Thus, the irregularities in the D
versus O results are consequences of varying degrees of convergence toward critical configurations
rather than characteristics of the model.

Figure 3 is a typical central cross section of the 6, = 20 structure showing the boundary-effected
regions and the relative variations in z. The boundary-effected region has diffused into the central 257 x
257 square; however, the central 129 x 129 square has not yet been impinged upon by boundary effects.

Figure 4 shows distributions of local D values (obtained by analysis of the corresponding D-maps) for
the o, = 20 and 40 structures. Boundary effects are represented by the local D values near 2.0in the
central 257 x 257 region for the 6, = 20 structure. These are consequences of the fact that the steep
"walls" seen in Figure 3 are nearly flat. The effect of varying o for regions free of boundary influences is
apparent in the results presented for the central 129 x 129 regions: Generally, as o increases, the mean
value of D and the breadth of the distribution of local D values increase.

Figure 5 shows how the structure with 6, = 90 passes through subcritical regions as more particles
are added. The useful scaling range in the least squares fit (the range over which fractal scaling is
obtained) increases from 3 doublings at N = 107 to 6 doublings at N = 10°. The range of fractal scaling
in the subcritical regions correlates with the magnitude of the cutoff in the size-effect limited hyperbolic
distribution of avalanche sizes.

SUMMARY

The simulations demonstrate that complex SOC systems can arise from the simple local dynamics of
cellular automata. In the present case, a scale-invariant structure with correlating size-effect limited
hyperbolic distributions of avalanches evolves from a planar surface in a system governed by simple
uniform local dynamical rules. The diffusion process leads to uniform scaling well beyond the nearest
neighbor distances that are directly involved when the system is perturbed.



|

| A new analytic technique, based on triangular tessellations of single-valued surfaces in 3-space, has

| been applied to extract the fractal scaling parameters from the relatively sparse data sets generated by the
present simulations. Since the algorithm is numerically expensive to apply to the determination of local
D-maps of heterogeneous surfaces, the computational problem has been mapped to a multicomputer
platform comprised of UNIX workstations using a subset of TROLLIUS called LAM for interprocess
communication. Computation of large sets of local D-maps is presently impractical without the use ofa
highly dedicated computer ensemble.
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